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1. Introd--action

The missile map-matching problem for guidance updating or target homing is shown in Figure 1. The
problem as defined here consists of locating the poslition of a sensor image relative to a reference map
which is stored onboard the vehicle's computer. Once the match location is found the relative location
between the two map centers can be used to update the vehicle's navigational position. The two important
performance considerations are the avoidance of false fixes as measured Ly their frequency of occurrence
and the accuracy with which the position fix can be made.

>ýhis paper describes the overall design and evaluation of map-matching systemsq (For additional back-
ground information, the reader is referred to references 1 - 10. ) Figure 2 shows thý layout of a typical
system design. Here the system parameters associated with the reference data, senqor environment and
vehicle are integrated to determine a model of the image dynamics. This model use# in conjunction with a
signature prediction model is used to construct the reference map or set of reference maps to be stored on
the vehicle.

In the map-matching problem a number of errors can develop between the sensed image onboard the
missile platform and the image reference map stored in the vehicle computer. Those errors can be
categorized into four generic classes depending on their impact on the composition of the sensed image
relative to the reference map. Global errors which impact all elements in the sensed image are generally
accommodated by preprocessing while all other types of errors must be accommodated by the choice of the
matching algorithm. The scene selection process is important for determining that the reference map area
contains sufficient information of a nonredundmnt nature to successfully perform the matching task. The
scene selection process consists of a two part screening process. The first part consists of various
mathematical tests which determine to a first level the amount of independent information and
redundancy within the scene. The second part consists of simulation to determine the acceptability of the
scene under real world flight conditions. Finally,_ system verification process is required to determine
from the nature of the matching data whether a successful match has taken place and if not, what appropriate
action should be taken. K

This paper is divided into four additional sectioni,>Section 2 describes the problems associated with
describing a scene mnathematically and with the time and spatial-varying nature of scene signature for
various sensor types. This section describes the nature of environmental factors on image dynamics and
their impact which zan be measured in terms of predictive errors, nonstructured errors, and contrast
reversals for various sensor wavelengths. Finally, remedies are discussed which can mitigate the effects
of errors due to image dynamics.)

,-:Section 3 describes the problems associated with ieference map construction and discusses the scene
C election process by which 'good 4 l reference scenes are progressively ocreened out frorn those that are

"Lot so goo'd.

,->Section 4 describes the compatibility of various classes of algorithms to accommodate each of the four
categories of error sources. Ultimately, since the magnitude cf these errors is sensor dependent, this
section cros orrelates algorithm appropriateness for each sensor wavelength.-

'-# Finally, Section 5 describes the mathematical process behind developing measurcis for system perform-
ance. This section is divided into two parts. -In the first part the general scene/error model is discusred
and a mathematical approach (through a list assumptions and approxirmations) is outlined which can be
used to predict the probability of false match sc-urrence based on a number of system parameters. In the
second part of the section, one is concerned witli (given a particular scene) using the statistical data from
the map-matching algorithm to estii-ate the system performance in near real-time,,-
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2. Imar e dynamics and its impact on comparison of sensed image and reference map

Figure 3 depicts the impact of dynamic changes in the scene signature on the map-matching system. An
indicated in the figure. the sensor!image interaction is influenced by a number of environmental factors.
These factors, combined with inherent time-varying material physical and electrical properties, produce an
oscillation in the scene signature. Dynamic changes in the sensor scene when compared to a time-
stationary reference scene can cause significant errors to exist between the two maps. These errors, if
unaccounted for, are generally a major cause of failure in map-matching systems,

It in the purpose of this section of the paper to:

1. describe the scene composition,
2. discuss the impact of environmental and inherent scene factors on signature dynamics,
3. discuss and quantify the nature of the map difference errors when sensed and reference map

are compared, and
4. outline remedies for accommodating map difference errors in the system.

As the influence of the environmental and inherent scene factors is wavelength or frequency dependent,
the discussion will focus on the most common active and passive sensor categories (i. e., opticallnear IR,
middle IR, thermal IW, and microwave).

The following section will describe the reference rrap selection process including methods for choosing
reference maps to reduce the map difference problem. The subsequent section will discuss the role of
various types ol algorithms in accommodating map difference algorithm and other types of system errors.

Sensor Scene (Terrain) Map
• ' Comparison

Sensor Environmental Scene Time Comparison Map
Description i influences Description varying of reference difference
wavelenth - atmosphere' - homogeneous mpscene " rp&sensed-' errors
(frequency) - meteorology regions signature image - contrast

" ground - resolution & A reversals
resolution texture depen- - prediction

dent elements - non-

Reference structured

Inherent time map

varying scene (non-time
properties varying)
- physical
- electrical

Reference map generation!

- wavelength conversion
(if necessary)

- geometry conversion

Figure 3. The impact of image dynamics on map comparison

2. 1 Composition of the scene

The scene is the most complex component of the map-matching problem and the most difficult to model.
Scenes can be described in the visual domain (the eyeball process) as being composed of a met of features.
Actual sensor data, broken down by resolution elements, are described by a set of intensity values. There
are regions of intensity values in the scene which can be considered aralogous to features in the visual
domain. These are homogeneous regions* within the scene which can be considered equivalent to features
(because a feature can be defined by a single homogeneous region or set of homogeneous regions). From a
physical standpoint, homogeneous regions are areas in which the signature (reflectance for visual and radar,
emitted power for middle and thermal IR, and altitude for terrain contours) is expected to remain fairly
constant, e.g. . a grassy field in which all the elements in the region are expected to have the same mean
value bat not necessarily a constant value.

There exist variations in the intensity level within a ho- iogeneous region. Neglecting the possibility of
sensor noise, this signatur.ý variation can be attributed to either scene resolution constraints or texture
variation within the region. Scene resolution constraints can cause a perturbation in the signature of the

*We define a homogeneous region to be a set of spatially connected pixels or elements which possess the
statistical property of at least first-order stationarity (constant mean intensity level over the region) and
possibly second-order stationarity (mean and variance constant and autocorrelation independent of position).
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region. For instance, one c.an consider the grassy field not to be uniform but instead to have a few fallen
tree trunks and shrubs dispersed within it. If the ground resolution of the sensor is of the same magnitude
as the size of the shrubs and tree turnks, then we would expect variations in the intensity of the grassy
regions due to these objects. * A should be noted that if the resolution of the sensor were to increase to the
point that dimensions of objects within the grassy field covered several sensor resolution elements, then

theme objects would be considered homogeneous regions in thamselves. In our tree trunk example, further
increase in sensor resolution vould result eventually in the moss on the fallen tree trunk becoming a
homogeneous region. .Obviously, the process of identifying homogeneous regions could continue ad infinitum

as the sensor resolution was increased.

Thus, we can further categorize a homogeneous region in the physical domain by the number of reso'u-
tion elements containing objects which contribute to a signature variation and in tht statistical domain by
the number of statistically indeperdent elements which comprise the region. The 'scene resolution" con-
cept (11) provides a uneful framework for analyzing the statistical variation of a region**. We shall define
this scene resolution as the ratio of the average of the nur.4ber of sensor resolution cells to that required to

make up the ecuivalent of one independent element in the imaged map. As discussed above, sensor resolu-

tion constraints are one contributing factor to "scene resolution"--the other being texture.

Texture, caused by physical and electrical material variations, can exist even within purely homogeneous
regions. The three primary sources of homogeneous material texture are: illuminator-target-detector
geometry, wh'ich includes slope and slope azimuth; directional reflectance and absorpta ice described by

electromagnetic theory (Fresnel's equations) and surface roughness effects. Texture produced by these

processes can be virtually resolution independent in comparison to those observed within a resolution depen-

dent homogeneous region (i. e., see previous discussion). A more detailed presentation of homogeneous

material texture i- given !,n the appendix.

Z. 2 Signature dynxamics

In order to estimate the intensity magnitude and oscillations that occur in sensor imagery, it is first

necessary to understand the relevant physical and electrical material properties and governing atmospheric

and meteorological parameters present. A summary of the governing material properties for each sensor

region is given in Table 1. Similarly, relevant atmospheric and meteorological parameters for each
spectral region are given in Table 2.

Contrast reversals are of importance to the mission planier because of the potentially decorrelating
effect they can have on map-matching system performance. A summary of the relevant parameters in each
spectral region that c~an induce these effects it given in Table 3. The diurnal and seasonal impact on

reference area signature characteristics is also important since it provides the mission planner with a

time-frame estimate of when region level shifts, hence contrast reversals, are likely to occur. A summary
of the time-cycle impact on reference area signature characteristics for each spectral region is given in
Table 4.

The impact of physical and electrical material properties and atmospheric and meteorological effects on
time-varying reference area signature characteristics will now be presented for each sensor region. The
impact of snow/ice/water on the reference area signature will not be considered here. An estimate of the
magnitude o; contrast reversals it can induce within typical reference areas is given in Section 2. 3.

Passive opticyA/near IR. The governing material and atmospheric properties in the passive optical/
near IR interval (. 4& -- I. 6ý) are short wavelenqth reflectance, incident irradiance, atmospheric attenuation,
and path radiance, respectively. Contrast reversals in this spectral region are primarily due to changes in

material reflectance due to season&- effects from the vegetation growth cycle.

The atmospheric effects, particularly attenuation and path radiance, govern the degree of observed con-

trast for a given imaged scene. The effect of atmospheric attenuation is to uniformly reduce the received
radiance across the scene. Path radiance, however, introduces additive energy into the imaged resolution
element via direct or indirect atmospheric scattering that originated outside of it. The net effect of these

two terms is to lower the observed scene signal-to-noise ratio (SNR) for a given sensor. They are usually
the limiting operational factors in this wavelength region. Complicating operational performance pre-

dictions in this interval is the fact that the values of most of the governing material and atmospheric
properties are generally a strong function of v, velength.

Passive middle M. The governing material properties in the passive middle IR (31.-- 5%) region are

middle I. reflectance (hence emittance) and thermal inertia (thermal conductivity over the squ~re root of

thermal diffusivity). The predominant atmospheric properties are attenuation, and

* Presuming, of course, that the signature of the objects was different from the grass at the wavelength of

.the sensor.

** The scene resolution is c,,mputed by determining the number of independent (NJ) elements In the image

and then dividing this quantity into N, the total number of resolution elements in the scene (1. e., N/NI).



Table 1. Governing Physical and Electrical Material Properties
(Decreasing Order of Importance)

Sensor Reelon Type Physical Electrical
Optical/Near IR P Surface Roughness . .4p1•1.6I, Reflectance

and Imaging Geometry

A ftrface Rolumgess - .41-1.6 0 Refwectance
and Imaging Geometry

Middle ZR P Thermal Inertia - 3 P-Sa, Reflectance
Imaging Geometry . .401-.6,L Abeorptance

Surface Roughseo - 3 IP--SP Emittance

A Surface RoeChness - 3P-L- 5 Reflectance
and Imabing Geometry

ThermalIR P Thermal Inertia .4bI-l.6I Abeotptance
Imaging Geometry
Sa. face Rougbness - 8#&- 12.1 Ernlttance

A Surface Roughness - 8o • IZ Reflectance
and Imaging Geometry

Microwave P Surface Roughness - Microwave Reflectance
Imaging Geometry and Emittance
Thermal Inertia - .40-1.6 Abw,,rptance

A Surface Roughness - Microwave Reflectance
and Imaging Geometry

•Aw. Active system
Pa Paesivt systern

SDiractional electrical properties exist in each case which vary with surface roughness and inmaging
(illuminator - surface - sensor) geometry.

Table Z. Atmospheric and Meteorological Impact on Sensed Imatery

Sensor Re ion VS Parametrr Inact on tacery
OpttcalINear IP- Small to strog for path radiance and attenuation

A - Small to strong for path radiance and attenuation

Middle ]I P - Small to moderate for path radiance
- Snall to strong for attenuation
- Small to moderate for reradiation
- Small to moderate for latent and sensible heat transfer

%!&pending on wind speed, precipitable water, and
atmospheric and ground temperatures.

A - Small to strong for attenuation

Thermal Il P - Smar for path radiance
- Small to strong for attenuation and reradiation depending

on species, concentration, diameter and temperature of
aerosol distribution pt sent.

- Small to mcderate for latent and sensible heat transfer
depending on wind speed, precipitable water content and
atmospheric and ground temperatures.

A - Small to strong for attenuation

Microwave P - Small for attenuation unless rain is present
- Small to moderate for oxygen or water (absorption and)

reradiation depending on species concentration present.
- Small to moO-Irate for latent and sensible heat transfer

(impacts moistu?,a availability, hence material emittance
and thermal energy balance).

A - Small for attenuation unless rain is present

C- Assumes operation under cloud cover with no precipitation

- Atmospheric attenuation is dependent on the species, concentration and diameter of aerosol distributions
present and atmospheric pressure (governs molecular species concentration).
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Table 3. Sources of Image Contras; Reversal

Seanor Reglon MCM Cause

Optiro6l/Near IR P and A - Optical/lWear IR
Vegetation Reflectance

Middle IR P - Material Thermal Inertia
- Diurnal 3,-451 Solar

Irradisace Ctomponent

A - .iddle IR

Vegetation Reflectance

Therrnai IR P - Thermal Inertia

A - Thermal IR
Vegetation Reflectance

Microwave P - Atmospheric Reradlttion
- Thermal Inertia

A - Microwave
Vegetation Aieflectance

Snow/Ice/Water complex enn produce contrast reversals in tech imaging region

Table 4. Diurnal and Seasonal 1nviroamental Impact on Sensed Imagery

Sensor Region Type Time Cycle Impact on Imagery

Optical/Near IR P Diurnal - Small to strong (depende on spkctral and
absolute level of illumnination imagery is
obtained under).

Seasonal - Small for spectral irradiance changes
(sun's declination angle) but moderate for
illumination level.

- M,.derate to strong over vegetation cycle

A Seasonal - Moderate to strong over vegetation cycle

Middle IR P Diurnal - Strong: whort and middle wavelength
irradiance drives thermal Inertia,
and direct reflected Middl-t IR
component.

Seasonal Moderate for spectral and absolute irradiance
level (hence thermval inertia? differences from
Sun's declination angle.

SSm•ll to moderate over vegetation cycle

A Seasonal - Small -o moderate over vegetation cycle

Y'hermal IR P Diurnal - Stroeg: short wavelength irradiance drives
thermal inertia.

Seasonal . Same as passive Middle IR

A Seasonal . Small to moderate over vegetation cycle

Mt%:row ve P Diurnal - Small to moderate for high microwave emit-
tance objects (thermal inertia can dominate).

- Small for low microwave emittance objects
(sky tempeyature dominates).

SSeasonal - Small to moderate for high microwave emit,
S•tence objects (sun's declination angle).

- Small for low microwave emittance objects

- Small to modearate over vegetation cycle de-
pending on canopy and soil moisture content.

A Seasonal - Mode rate over vegetation cycle depending on
backecatter coefficient.
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!t reradiation. The principal meteorological interaction parameters are latent and sensible heat transfer
(evaporation and convection respectively). Tbe material thermal inertia is related to the net rate of heat

* exchange at the surface between the air/material interface. Thermal inertia effects driven by the absorbed
short waveleLgth incident irradiance during the daytime generally predominate the emitted power component
at night. During the day, both reflected solar middle IR and thermal inertia components contribute to the
observed signature. Contrast reversals in this spectral region are primarily related to material thermal
inertia, where the smaller the magnitude of this parameter, the greater the temperature (hence emissive
power) oscillation. Contrast reversals can also be induced in thic spectral region when a large solar and
atmospheric 3p - Sp flux is present, coupled with a low to moderate material surface temperature. Here,
the time-varying nature of the downwelling flux passes through a cycle of small to large to small
.oincident with the solar zenith angle. If the 3R - Sp solar reflected component is larger then that due to
material emission, a time-varying contrast reversal can result.

The limit;ng atnmospheric case due to attenuation occurs when an image is obtained through an atmosphere
with a moderate to large diameter aerosol distribution. In this spectral interval atmospheric attenuation
from aerosols usually predominates over reradiation from preciptable water during the daytime, but at
night the reverse is possible.

Sensible and latent heat transfer can impact the imaged spectral signature in this region iy altering the
ground temperature. This in turn impacts the image signature, particularly at night when t e ground
emission componp.nt predominates.

Passive thermal iR. The governing material properties in the passive thermal IR (8I - 1.• ) region are
short wavelength reflectance (typically . 4R - 1. 6 ), thermal IR emittance and thcrmal inertia. The princi-
pal atmo.spheric properties and meteorological interaction parameters are identical to those iL the middle
IR region.

In this spectral region, material thermal inertia is the sole cause of observed ground signature contrast
reversals. Since a aegligible amount of thermal MR energy emitted by the sun penetrates the atmosphere.
short wavelength solar irradiance driven, thermal inertia effects predominate the image over the diurnal
cycle.

Atmospheric attenuation in a dry. cloud-free atmoepherit is ir-all in this spectral region. A substartial
amount of reradlation (hsnce image contrast reduction) can occur, however, when a humid, warm atmos-
phere is present due to increasing e.missive power with precipitable water and atmospheric temperature.
Such conditions will often form the cloud-free limiting case for sensor operation in this spectral regiou.

Sensible and latent heat transfer becomes important when a significant difference in atmospheric and
g roune temperature existscoupled with a non-zero wind speed and relative humidity. These heat transfer
components can produce a noticeable signature oscillation for a reference area imaged under widely varying
meteorological conditions. Furthermore, the magnitude of these parameters are often difficult to evaluate
due to the lack of the necessary ground truth data.

Passive microwave. The governing material properties in the passive microwave imaging (.3 cm to 3.0 a)
region are passive microwave reflectance and thermal inertia. The principal atmospheric parameter here
is the contribution of precipitable water to the sky brightness temperature. Sensible and latent heat trans-
fer components tend to have little impact on the observed signatures unless high microwave emittance
materials predominate.

Contrast reversals are cnly possible in this spectral interval in two cases. The first involves materials
with low rmicrowave reflectances. Here, the material microwave smittatce (times ground temperature)
component predominates and the resulting onergy balance, hence imagery, behaven similarly to that in the
thermal IR region. ' In the second and much rarer case, a reversal will occur when the sky brightness
temperature id greater than the material temperature. This is generally only possibl% under cloud cover
conditions when a substantial amount of precipitable water exists along with a low to moderate ground
temperature (-Z73 0 X - -2 90 0 K).- Here, the emitted energy from the precipitable water becomes greater
than that from the reference inhterial. As a consequence, materials with a high microwave reflectance
(i. e., metal and water) can nave greater apparent brightness temperatures than those with a high micro-
wave emittance (i e. . soil). This results in a reversal over the expected case where a dry atmosphere is
pr-esent.

Coatrary to general belief, the oul material'u that can not exhibit the first type of contrast reversal ais-
cussed above in the 35 GHz and 94 WHX bands are metal and water, since most materials possess high
microwave ernittances in these regions at small scan angleo. As a consequence, regional error shifts (and in
some cases contrast reversals) can result since many common materials (1. e., vegetation, soil, concrete
and rock) exhibit microwave emittance, hence thermal inertia dominated time-varyink oscillations. Pre-
diction of vegetation and soil signature magnitudes and their oscillations can be very difficult, however,
because of the impact of moisture availability on microwave material enaittance. Like in the infrared
iegions, additional Instability in the microwave signature can occur due to atmospheric reradiation effects;

rticularly for metal and water which possess low and moderate microwave emittances respectively.
,&aive microwave Pignature variations for these materials are generally much larger than in the infrared

for similar condiions which produce atmospheric reradiation.
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Active systems. For imaging lasers and radars the 4overning material electrical property is reflectance
(orte backscattsr coefficient). Atnmospheric absorption and scattering (attenuation) is often the limiting
envlronmental factor for laser imaging systems, although it is usually small for radars. These systems
are at le.a.st directly insensitive to many of the complex time-varyih physical atmospheric and meteorologi-
cal effects that impact passive systems (L a.. thermal inertia, solar irradiance, and latent and s8nsible
heat transfer).

An additional class of active sensors existed that use the spectral transmitted beam in a *hase modulated
carrier or range-gated form. The advantage of these sensors is that they can be relatively insensitive to
aUl material and meteorological properties and generally are only limited by atmospheric effects. In the
fRrst case a frequuncy •odulated signal is placed on an iptical laser carrier beam. Very accurats target
ranging and depth information is possible by detecting the phase frout distortions of the returned beam
induced by the object.

The second type of system is operated in a ranging form by measuring the two-way propagation time to
the ground or target (down and forward-looking respectively). A common down-looking forn of this system
is a radar altimeter vied In Terrain Contour Matchin8 (TERCOM'. A widely used forward-looking form is
the laser rangefinder used in tactical armored vehicles.

For both types of systems two governing performance factors exist. First. the reflected object energy
must be high enough to produce an acceptable SNR. This often limits the operational distance because of
beam dispersion, and atmospheric effects (lasers only). The second tuvolves the beam pattern itself. If
it is too large in diameter versus the imaged object, phase information becomes ambiguous for the first type
of system. For the altimeter or rangefinder system this also poses a 1.roblem due to an increasing
uncertainty in knowing the object that produced the first or -trongest return. Their princepal disadvnntages
include hardware complexity and lack of maturity (phaso modulated laser) and potential Iaccuracy
(altimeters and rangefinders) against point targpts due to reference imaging requirements and their usual
one-dimensional configuration. When targeting conditious permit and operation essentially invariant to
cnvironmentokl conditions is necessa.'y, these two types of sensor systems should be strongly considered.

Atmosoheric and meteorolosical parameters. A summary of the relevant atmospheric and meteorologi-
cal parameters on sensed terrain imagery is given in Table Z. Heer% molecular absorption has not been
directly considered. It is at least implied, however, since the atmospheric windows utilised for remote
sensing exist in regions where these effects are smalL Molecular absorption band characteristics vary with
temperature and pressure for a given species. Aerosol absorption and scattering are less specific, since
they also vary with the diameter distribution present.

From Table 2 it is apparont that pth radiance effects caused by aerosol water decrease noticeably
beyond the optical/near and middle IT reqiens. This is a result of the aerosol dia.meter distributions typi-
cally present and the small amount qaf solar irradiance that exists in the thermal YP. and passive microwave
regions. Reradiation becomes increasingly important with wavelength, and in passive mi.:rowave imagery it
is the dominant rain-free relevant atmospheric parameter. Latent and sensible heac tranmfer - re the pre-
dominant meteorological remote senoing parameters. ard can have a moderate impact on the resulting
energy balance present in middle and thermal IR imaging and alter the resulting emittances of some passive
microwave materials (particularly soil).

Time-cycle impact. Large oscillations nod possibly contrast reversals in material signatures often occur
during diurral and seasonal time-frames. A summary of the relevant phenomena for active and passive
sensor systems is given in Table 4. Two factors are evident from the data given. First. the performance
of each passive sensor system can be altered by the level and spectral distribution of incident solar irradi-
ance in the atmosphere and at thc. ground plane. Second. the spectral reflectance, thermal inertia, and
moisture availaobility associated wth vegetation growth cycles on land can significantly impact imaged signa-
tures in every spectral band on a seasonal basis. Only phase-modulated or range-gated lasers and radars
appear to be relatively immune to this problem as long as deciduous trees are absent.

Two items have been omitted 1rom Table 4 for simplicity. The magnitude and type of atmospheric and
meteorological effects present prior to and at the moment of imaging are represented by a joint diurnal-
seasonal time cycle probability distribution function. Likewise, the presence of snow/ice/w&ter within the
reference area can also be described by another joint diurnal-seasonal probability distribution function.
These two distributions are very complex (perhaps presently indeterminate) and only moderately currelated
with time. Coosequently. at best it is only possible to approximate the impact of these factors on spectral.
time-varying reference area signatures.

2. 3 May difference errors

From a systems point of view one can categorize all the map differences as affecting:

1. the spatial shape of homogeneous regions,
2. the relative mean intensity levels between homogeneous regions and
3. the absolute intensity level of a region.Li
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In the vernacular these effects are commonly referred to as nonstructured error%, cov'rapt reversals,
and predictive coding errors. respectively. A comn.ination of these factors are generally present in sensor
imagezy and induce errors in the map-matching process due to thriir complex nature.

Nonstructured errors can be broken down into two categories. In the first case, the impact of the pertur-
bations is predictable, although it may not be possible or desirable to prepare a large number of reference
sceneL for compensation. Errors in this class include shadows, which can lead to contrast reversals
within the affected region. Their location can be calculated given the illuminator-target-vehicle geometry
combined with the terrain topography. Errors of the s.cond type are more diffftuWt to predict, hence to
produce compensating iteages. These errors include terrain areas obocured by clouds and snow tce/water.
Here, the joint probabil t ty space-time error distribution affecting the reference area (hence each rec olution
elementý is virtually unknown.

The net effect of changes in the atmospheric, meteorological and physical and electrical material pro-
perties is to prod.nce variations in the intensity level of one hornagv.neous region relative to another. If the
intensity level shifts are severe, contrast reversals between regions can result. An estimate of the
expected range of contrast ratio reversals between representative natural materials is given in Table 5.
Maximum values and the governing parameter are given in two cases f3r each spectral region. In the first
case, contrast reversal ranges due to physical atmospher c and meteorological parameters are given. It.
the second case, those produced by snow/ice/water are presented.

Table 5. Estimates of Contrast Reversal Magnitudes and Their Causes

Sensor Region Type Normal Contrast Snow/Ice/Water induced
Reversal Range Contrast Reversa& lRne

Optical/Near IR P and A :-4. 4 db (vegetation/soil reflectance) S6. 6 db (snow/soil reflectance)

MiddleIR P a. Sdbor 1. ZX 10 -  1. wdbor3.7X 10
cm -Sr cm -Sr

(soil thermal incrtia, (wet soil/soil)

A <. 7 db (vegetation/soil reflectance) 5-. 9 db (snow/soil reflectance)

ThermalR P 8db or 1.4 X 10" 3  w -1.6 dbor 5.4 X1 3  w

cm -Sr cm r

(soil thermal inertia) (wet sonl/coil)

A S.4 db (vegetation/soil reflectance) <. 5 db (snow/soil reflectance)

Microwave P ii.2 db or 1, -X 10"- 1 -- 52.4 db or 3. 1 X 10"I0 w
cm -Sr cm -Sr

Ka Band, clear or cloudy sky Ka Band, clear sky (wet snow/soil)
(soil thermal inertia)

A possible but small (tree/field) S13 db, X Band (wet snow/soil)

Strictly speaking, signature variations caused by snow/ice/water are predictive errors. The effect of
this complex is to produce random space and time-varying signature boundaries, hence artifical homo-
geneous regions, within thi reference area. As a result, contrart reversals can occur within the sensor
image due to signature variations between homogeneous regions created by the snow/ice/water and tnose
from the nominal, underlying material signature. Preprocessing techniques that emphasize hornogeneoua

~~regions in the sensor scene can produce catastrophic map-matching failures when snow/ice/water are likely
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For the passive optical/'near IR and all active cases, the output is given in db change in material
reflectance. For th. passive middle and th,'. real IR, and microwave cases, results are pr"esented in both

watts /cmZ-steradiat and db of radiance change between regions. Results are similarly given in the snow/
ice/water cases except the eirntiture of the perturbing state is compared directly to a nominal material.
Results for the passive middle and thermal Ii.a and microwave cases were determinedt with the aid of a

sophisticated atmospheric boundary layer model. Contrast reversal ranges were not computed for man-

made materials because of the complexities introduced by geometry and internal heating (for the middle and
thermal IR cases).

Contrast reversals produced by means other than snow/ice/water will 11irst be examined. From Table 5,
it in clear that the vegetation cycle cant produced significant contrast reversals against soil (as well as other
material) backgrounds for active and passive optical/near IR and active middle and thermal IR imaging
systems. The largest reversals in the passive middle and thermal IR cases, however, are generally pro-
dticed by solar irradiance driven thermal inertia differences between materials present. Contrast reversals
can also occur in the passive microwave region due to the vegetation cycle, where the primary contributing
factors are soil and plant moisture availability. Reversals or intensity shifts between homogenous material
regions are primarily produced in this spectral interval by moisture availability and thermal inertia effects
which impact the microwave emittance and gsound temperature (hence the emissive power ground component)
dependirg on the climatic conditions present.

When contrast reversals due to predictive errors from snow/ice/water are examined, it is clear that the
magnitudes produced by this cause are greater than those from the corresponding non-snow/ice-water (vege-
tation cycle and thermal inertia) cases in every instance. Although these values may serve as reasonable
upper bounds, the mission planner should be aware that changes in the snow'/iee/water state can produce
substantial signature vairations over a short to long time -frame due to the coiiplicated physical and
electrical properties of this material complex.

From this, it is clear that no imaging spectral region is immune from contrast reversal effects. It is
possible, however, to reduce their magnitude, or in some cases eliminate them entirely if careful nominal
signature prediction is utilized together with criteria for eliminating regions where large signature oscilla-
tions will surely exist. A more detailed discussion of this problem is given in Section 3. 3.

As indicated in Figure 3, a reference generation pro.ess is used to develop an image for map-matching
purposes. Obviously, to ensure systems performance this processing step must have the highest degree of
accuracy possible. Two types of predictive qrrors can ariwe from less than a perfect process. The first is
the result of having to synthetically create imagery in a given spectral region when source data are unavail-
able. The second involves utilizing real or synthetic reference imagery selected or generated with one set
of environmental parameters but used against another where a significant signature divergence has occurred.
The missicn planner should use a nominal rather than abnormal reference image when large signature per-
turbations are possible which can not be accurately predicted.

When spectral band conversion is necessary the materials within the refere.ace area must first be identi-
fied. The synthetic image signature is generated by using the known physical and electrical properties of
the identified materials in conjunction with the specified illuminator-targ et-detector geometry.

A compilation of factors influencing the accuracy of reference image prediction versus the actual scene
signature is presented in Table 6. An estimate was made of the expected prediction errors for homogeneous
regiona within representative reference areas for each spectral region and is given in Table 7. Reasonable
uncertainty v-alnes of perturbation components given in Tables 2, 4, and 6 were used tc generate these esti-
mated regional errors. Although these values should only be used as a guide, they can provide the mission
planner with an estimate of which map-matching algorithms can not be used with certain forms of spectral
imagery. This is due to the performance bretkdown of some-Wagorithm classes with increased regional
errors. The estimated regional errors in Table 7 include contributions from material identification where
appropriate.

Results given in Table 7 were calculated using diurnal, seasonal, and yearly time-varying signature esti-
mations for a hypothetical reference area composed of 45 peicent vegetation, 30 percent soil, Z0 percent
concrete, and 5 percent rock. Snow/ice/water complex materials were excludeO from this analysis.
Vegetation possesses the only time-varying dielectric signature variation (excluding snow/ice/water) in the
optical/near IR region. As a consequence the error bounds given in Table 7 for active and passive types in
this interval should be evaluated accordingly when other vegetation proportions are present. Although not a
factor for an active system, large actual versus predicted error bound6 for passive optical/near IR systems
can exist if diurnal operation is desired due to significant spectral irradiance variations present in day
versus ambient night light.

As in the optical/nea.- IR case, the primary source of estimated versus actual ragional error bounds in
active middle and thermal DR, and microwave images is due to the tim.e-varying vegetation sigature pre-
sent. In these Interva)s, however, the general lack of source data nezessitates using a material
identification step in producing synthetic reference imagery. The resulting errors in this procedure coupled
with the lack of a complete physical and electrical material properties catalog produce errors in the signa-
ture translation process.



t -11-

Table 6. Parameter Error lmpa,:t on Intensity Estimate Accuracy

(Decreasing Order of Importance)

Passive Active

C.Rtical/Near IR Imaging weatho r Imaging weather
slope/slope azimuth slope /slope aairmuth
seasonal seasonal
moisture availability surface variations
surface variations moisture a.ailability
diurnal reflectance knowledge
reflectance knowledge

Middle IR Imaging weather Imaging weather
thermal inertia s)ope/slope asimuth
diurnal surface variations
pre -imaging weather seasonal
slope/slope azimuth reflective knowledge
moisture availability moisture availability
seasonal
subsurface variations
moisture availability
albedo knowledge
surface variations
emittance knowledge

Thermal IR Imaging weather Imaging weather
thermal inertia slope/slope azimuth
moisture availability surface variations
slope/slope azimuth seasonal
pre-imaging weather moisture availability
seasonal reflective knowledge
subsurface variations
albedo knowledge
surface variations
diu rnal
emittance knowledge

Microwave! Moisture availability Slope / slope azimuth
the rmal inertia surface variations
imaging weather seasonal
surface variations moisture availability
emittance knowledge reflectance knowledge

In the passive middle and thermal IR cases, the primary source of estimated versus actual regional
error bounds is due to the ground emission component governed by the thermal inertia of the materials pre-
sent. In addition to the large regional error present between most day/night pairs analyzed in these cases
is the fact that a high degree of anticorrelation, indicative of the inherent contrast reversals, also existed.
These effects are generally noted when materials with a moderate to high range of thermal inertias are
present within a reference area. As in the active cases previously mentioned, material identification errors
and data gaps in material property libraries also contribute to the regional errors present.

As previously discussed in this section, when materials with high microwave emittances are present
within a reference area, the resulting time-varying passive microwave signature can behave similarly to
that in the middle and thermal I. regic -. If materials with rio"erate to low microwave emittances are pre-
sent, the variation in the ground temperature component of the apparent brightness temperature due to
material thermal inertia effects is damped, and a greater degree of regional error stability results.

In the case of range or phase-modulated sensors, the principal source of predicted versus actual regional
errors is due to the time-varying nature of vegetation signatures (particularly deciduous trees) present
within the reference area. A high degree of reference stability is possible with these sensor types if care-
ful reference scenri screening is utilized.

I
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Table 7 Est'nmted Versus Actual Regionai Error Bound%:'

Expected Error Bourds

Spectral Interval Tye Low High

Optical/Near IR P 15%/ 25%
A 10% 20%

Middle IR P 20% 1 100%
A 15% 30%

Thermal IR P 15% - 100%
A 10% 30%

Microwave P 15/0 %- 000 ***

A 2076 35%

Range or Phase- A Small except when deciduous trees present

?A'.dulated Sensors

* Exclusive cf e'-cw/ice/water c~inplex

", The avera- #-`f1i %rencL between the t.r al mean intensity
level difference. among regions and the predicted intensity
.evel difference amnong regions divided by the actual
intensity range period spread among regions.

*** Whei. vegetation fraction is replaced by metal, error
bound range is 15%6 to 30%.

2.4 Remedies

r:o- .ai. revers1,4. nonatiactured, and rr.l'ttive errors can cause map-m"•tching performance degrada-

tiont r -. e - ; n other 1-'r types (1, e., •eomet distortions) are minimal. There are, however, four
differ! n r. -uy cat., -t ,nat can miimize the impact of these errors on map-matching systems
perfo.•ma-:ce. They .A:lude: (1) accurate nominal signature prediction, (2) proper scene selection,
(3) algorithm flexibilrh', and (4) adaptive performnce prediction.

Accurate noni:ial signature prediction is ýalirable to reduce level shifts, hence minimize contrast
reversals between lomrrogen-ous regionc vithin the reference area. Errors preseat in the suinature model,
choice of nominal atmospheric conditions or material identification process (if utilized) will all contribute
to reduced map-matching performance. Although preprocessing the reference and/or sensor scenes can
potentially reduce the irmpact of global and local bias and gain changes, the results are quite sensitive to I
eccurately predicting the correct time-varying spatial and intensity structure of the image. If applied
improperly, preprocessing steps can actually reduce rather than increase systems performance. An addi-
tional discussion of these t.a.tors is given in Sect~ion 3.

Proper scene selection is important for two major reasons. Areas that are prone to have large signature

varriations in a given spectral region due to contrast reversals, nonstructured or prediction errors should I- e
,ientif'ied and c0irminated if possible in the scene selection process. As a consequence, an accurate
reference scene screening procedure is desirable so that an estimate of the probability of false fix (Pff) can
be determined under a varie'y of environmental conditions for a given area. It is necessary here to evaluate
-Ie area for intrascene redundancy under an expected operational SNR. If an unacceptably high Pff results,
'e cuadidate reference image ouiould be rejected. A more detailed pý'esentation o.f these topics is a&so

given in Section 3.

It is desirable to utilize a.p-m•3ching algorithms that oL.r a degree of insensitivity to environmental
pertu1'bationL,, geometric d~twrtions and SNR while.accuratly locating the true matc-: point. Each

alsorithrr cl.&,.* 'correlation, iaature extraction, and hybrid) h•n its own advantages arid disadvntages
depending on the type of imagery procemsed and the magnh.tude of the distortions present, A more detailed
discussion of this topic is given in Section 4.

Since map-matching algorithm performance begins to break down with increasing distortion present
W sensor imagery. it is desirable to utilize a technique that provides a confidence estimate of the quality of
the fix. A generally used method is to examine the surface statistics produced by the map-matchl -.g
alg,-ithm correlation of reference and sensor scenes. Utilizing a simple technique, however, that does not
compensate for the original scene properties or the impact of the algorithm itself on the resulting surface
d..tribution can be inaccurate when typical distortion@ are present. A more detailed discussion of adaptive
S performance predictions is given in Section 5.2.
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3. Reference map construction and scene selection process

Figure 4 describes the overall map construction and scene selection process. Several steps are
necessary to develop a refarence map from raw sensur data. In the first step of the process, it may be
necessary to identify the scene material (especially if a different wavelength is to be utilized) and geometri-
cally correct for other viewing aspects. Once this is accomplished tie scene signature can be predicted and
a nominal signature determined. Due to environmental factors and other time-varying variations inherent in
the properties of scene, it is also necessary to predict perturbations to the nominal that are likely to occur.
Having completed the signature prediction task it is necessary to construct th- reference map and check via
the scene selection process that it is adequate for the map-matching task. In constructing the reference map
in many cases it is necessary not only to predict intensity levels but (depending on the matching algorithm)
also to identify homogeneous regions within the scene. Once this is accomplished the scene can be checked
via mathematical techniques to ensure that it contains sufficient information for matching purpobes and that
the scene is sufficiently unique to avoid any major inter-scene redundancy problems. Finally, the reference
scene must be tested via simulation to ensure that it is suitable under real world conditions.

This section will briefly examine:

1) the conversion process,
2) the problem;s associated with signature prediction,
3) construction of the reference map, and
4) the scene selection process.

Conversion Signature Reference Map Scene
Process Prediction Construction Selection

Raw - Material LI1). -Nominal - Signature - Math TestsRernc
Sensor Map
Data - Geometry - Perturbed -Reglon - Simulation

Identification Tests

L Environmental factors

Variations in physical
and electrical scene
properties

Figure 4. Reference map construction and scene selection process

3. 1 Conversion Process

As di cussed previously the first phase of reference map construction generally involves conversion of
the raw sensor data: 1) to the wavelength or frequency of the sensor onboard the vehicle and 2) to the geo-
metrical perspective from which the sensor is to view the scene. Because the raw data is generally not at
the same wavelength as the sensor it is necessary to estimate the material properties of each region of the
scene. Since many materials have very similar broad band reflectance properties in the optical/near IR por-
tion of the spectrum (from which most raw imagery originates) there may be significant mis-identification
errors which can create map-matching difference errors and ultimately degrade total system performance.

The other major almost insurmountable problem is to adjust the imagery for the geometr'- perspective
which the sensor is likely to see. For systems which look directly down (down-looking systems) the
geometry corrections are quite simple since one can assume a flat plane model for the ground. For other
non-down looking systems the geometric conversion process involves developing 3-D target model from the
original 2-D imagery and then creating a 2-D image at the anticipated perspective angle. Since the vehicle
may not actually fly the nominal trajectory, noa down-looking systems are subject to geometric errors
which require significant processing efforts to remove.

3.2 Signature Prediction

Signatures of the reference map need to be determined not only for the final reference map(s) which are
stored in the vehicle for comparison but also to test (via simulation) the performance of the system.
Seasonal mapia oý ý-a reference area may need to be developed and stored for use in at least some map-
matching systems. 'epending on sensor wavelength and map-matching algorithm it may also be necessary
to store separate refý"ience maps which account ior diurnal, atmospheric and meteorological effects on the
reference scene image. The mission planner. or reference scene evaluator is cautioned not to develop
overly sophisticated e:4 nature models when an underspecifiel set of conditions will exist. Even worse is
the case where poor guesses are made for certain input variable magnitudes; since in some cases this will
result in nominal reference signature with greater error than that from a simple model.
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Perturbed signature variations from the nominal are required to test the performance of the system

under a variety of diurnal, seasonal, atmospheric, and meteorological conditions. One should utilize this
procedure to determine whether several reference maps will perform better under a variety of signature
conditions tha.n a nominal signature prediction which is nnt accurate for any one scene condition but is
designated for compensating for these variational effects.

3.3 Referenct may construction

In the reference map construction area there a.'e two questions which need to be addressed. First, what
characteristics should the reference scene possess? Second, how should the reference scene be evaluated?
In this subsection we shall briefly discuss the choice ot a reference area. In the subsequent section we shall
.iscuss the simpler question of reference scene evaluation.

Table 8 lists some of the characteristics in the ideal reference map case versus the real world situation.
U1 the ideal reference map characteristics shown in this table existed then no reference screening or evalu-
ation procedure would be necessary. Philosophically, one can not control mother nature nor can one obtain
agreement (even .f one could control mot-her nature) on what scene characteristics (number oi homogeneous
regions, interpixei correlation length, etc. ) are best for map-matching systems. The only sure thiag that
can be said about reference map construction is that certain signatura characteristics should be avoided, and
hence this is the major topic of the following discussion. Since many types of algorithmc require that homo-
geneous regions or features be identified in the reference map a brief discussion of automatic techniques for
the region extraction is included here.

Table 8. Ideal Versus Probable Reference Scene Characteristics

Ideal Case Probable Case

Error free source data base Source data base has:

- Finite SNR

- Environmental and geometric distortions

present.

No reference map pr'-paration errors Datum plane transferral errors

Imperfect material identification and signature
models used in spectral translation.

Reference scene contains Reference scene usually contains:

- A single homogeneous region - Several homogeneous regions

- No intra-scene redundancy - At least some intra-scene redundancy

- Statistically independent scene elements - Interpoint scene element correlation

Simple statistical intensity distribution - Complex statistical intensity distribution

Tirr.e and space invariant signature - Time and space-varying signature with

without contrast reversals, contrast reversals.

Proper scene selection. Because of the complexity possessed by most spectral imagery and its non-
linear space and time-varying signature characteristics, the reference scene selection process is less than
an exact science. It is generally easier to make qualitative assessments an to desirable or undesirable
signature physics traits. It is considerably more difficult, however, to determine exactly how good a candi-
date reference area is without rigorous evaluation due to fhe statistical nature of expected environmental and
geometric distortions, SNR effects and intrascene redundancy.

The net effect of these degradations is to impact map-matching algorithm performance, and hence, the
reliability of the fixing process itself. An examination of algorithm class sensitivity to SNR and contrast
reversals is given in Section 4. 3, while a review of fix performance estimation measures is presented in
Section 5. 2.

If a map-matching algorithm is utilized which is sensitive to contrast reversals (i. e., ordinary correla-
tion metrics) then vegetation that exhibits strong time-varying growth variations should be omitted or
minimized in update areas in every spectral interval. Similarly, it is also advisable to eliminate candidate

update areas where low material 'thermal inertia and short wavelength reflectance in the passive middle and

thermal IR, and microwave (for high microwave emittance materials) regions predominates to avoid contrastreversal effects. From Table 5, it is clear that the snow/ice/water complex can adversely alter the
reference area signature in each spectral interval. Obviously then, water bodies should only be included in
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reference areas if they are unlikely to freeze because of the moderate to large signature perturbr.tions that
can result in active and passive spectral imagery. Unless phase-modulated or range-gated systems are
utilized, disastrous fixing results will often occur with ordinary correlation or feature matchini algorlthms
when snow/ice/water is present and changes in complex state arv expected.

If map-matching algo rithms are used which are sensitive to SNR (primarily feature matching and to a
lesser degree the hybrfd processing approach), then regionswhere strong at--- spheric and meteorological
variations exist should be carefully evaluated. The impact of atmospheric parameters (particularly
attenuation and aerosol scattering) typically decreases with increasing wavelength, but still generally forms
the limiting operational case to the thermal IR region (where reradiation becomes important). In the
passive microwave region, reradiation from per cipitabla water can introduce small to large oignature vari-
ations; particularly when materials of differing micrr;'wave emittances exist. Radars, however, are
generally unaffected by all but the moit severe atmoC.pherl.c conditions.

Although meteorological effects (i. e., latent and sensible heat transafer) typically produce a srrnaller per-
formance degradation than atmospheric ones, they directly imjact the terrain signature in each spectral
region when sotl moisture is present by governing its rate of evaperation. For each active spectral region
and passive optical/near ML, this appears as a change in soil reflectance. In the passive middle and thermal
IR, and microwave regio"s soil moisture variations alter the emissive powers of the surface.

Soil moisture effects will gunerally impact or .-:nary correlation and feature matching algorithm per-
formance the greatest, since its presence in sensor imagery is space and time-varying and is often not
equally proportioned within a homogeneous region. The impact of latent and sensible heat transfer for low
soil moisture and high atmospheric precipitable water will generally be to reduce the dynamic range, hence
contrast between homogeneous regions, in passive middle and thermal IR, and microwave imagery.

In some cases even these prc:edures vill be inadequate to produce representative imagery for guidance
updating purposes. Here, it may be necessary to select multiple reference images of the same area to
compensate for diurnal and seasonal effects. From this, the mission planner can either select the most
representative image in near real-time or store the set of multiple frames in the vehicle.

Diurnal variations in passive middle and thermal IR, and microwave imagery tend to be region-based.
Seasonal variations except those induced by snow/ice/water tend to be interregionatl for all the candidate
sensor types considered here. As a consequence, the hybrid map-mntching algorithm is often desirable if
an adequate SNR exists. From this, it is apparent that proper algorithm selectios for a given sensor type
can often simplify the task of nominal reference scene prediction. Conversely. r'sing a sub-optimal
algorithm will often place an overly stringent accuracy requirement on signatuxe prediction, and signifi-
cantly increase the time required for reference scene preparation.

Preprocessing references and sensor images or using binary data correlation can reduce the impact of
signature perturbation factors. As previously discussed, such schemes can n.. Iw successfully utilized
without a thorough understanding of the expected imaging physics, SNR and geometric distortions present.
If applied blindly, these techniques can often reduce, rather than enhance, guidance updating systems per-
formance.

Because of the inherent deficiencies in nominal signature prediction for a given tensor type coupled with
map-matching algorithm limitations, it is often desirable to employ adaptive performance prediction
measures to estimate the quality of individual fixes. A discussion of possible performanc6 prediction
techniques for guidance updating aFplications and then limitations is given in Section 5. Z.

Rezion extraction (12-22). Obviously homogeneous regions or features in the scene cau be found visually;
however, when scenes are described digitally by large arrays of riumbers, it is highly desirable to intro-
duce some level of automation into the process. There are two different approaches for automatically
extracting regions from scenes: 1) those based on edge operators and 2) those based on the stationarity pro-
perties of the region.

Edge approaches apply gradient or Laplacian-type operators to the scene and then use threshold techni-
ques to decide upon the existence of any edge (the boundary of a feature). The major danger in using these
techniques is that noise and distortion can make it very difficult to locate edges in the sensor imagery.

Homogeneous regions may also be located using the statistical property of stationarity (first order, con-
stant mean level in the region; second-order, mean and variance constant and autocorrelation independent of
position). In this area-based approach, one would grow regions of spatially connected pixels which would
possess this property. While this approach is less susceptible to problems of noise and'distortions it is
c omputationally more complex than the simpler edge operator techniques.

3.4 Scene selegtion

The scene selection process is concerned with choosing maps for which the probability of matching a
sensor image from within the reference map boundary is high. This process has both physical and
mathematical implications. There will obviously be signature differences between the sensed image and its
reference map counterpart due to such factors as geormetric, atmospheric, meteorological, diurnal, and

LiK



I" -16-

seasonal effectr, These effects on system performrrice can be mit,4,rized in the extreme by either pre-
paring the refarence map to be near real-time estimate of the sensor image at the moment it overflies the
reference a,.-ea or by developing scene particular algorithms that are relatively invariant to the signature
deviations 'between the sensor image and reference map. Realistically oae must reach a comp.-omise
between these two extremes and develop a reference map which will reduce the signature deviations
especially in defining the boundaries of a homogeneous region and utilize a matching algorithm that will
"compensate for any remaining signature differences between the two maps.

In general, successive screening tertniques from simple math tests to full-blown simulations are
chosen and used to evaluate the candidrte reference area. Since computer processing requirements
increase considprfbly with each screening e,*p, ft is desirable fcr unacceptable reference scenes to be
identified and rejected before the final simulstion analysis if possible.

The mathematical criteria for reference scene selection requires that there be (1) sufficient information
for mapmn•,hing and (2) a minimal amount of intrascane spatial redundancy within the reference map
boundary. Techniques exist for measuring the iniormation content in the scene to ensure that the sensor
image size (in terms of resolution elements) contain a sufficient number of independent elements. The more
difficult issue and yet unresolved is the determination of measure for scene uniqueness. Equipped with such
a measure it would be posrible within a reference map boundary to test the ensemble of possible sensor
images to determine the amount of intrascene spatial redundancy.

Heights of the secondary correlation peaks and their magnitude determined by autocorrelating a particu-
lar sensor map over the reference map area yield the location of areas where there is a possible spatial
redundancy problem. Two problems emerge from attempting to use this as a measure of the uniqueness
problem. First, in real world imagery the tragnitude of the intensity level shifts withiv the imagery may
have a significant impact on the location of secondary peaks. Thus this approach does not seem fruitful for
measuring scene uniqueness. Second, this approrch uses texture information within a region which may or
may not be used in the matching algorithm; consequently, the results may be different when texture informa-
tion is omitted.

The underlying spatial patterns in the map as designated by the size and sh kpe of the homogeneous
regions are the primary concern in dealing with the spatial redundat-cy prob...n. One method for measuring
scene uniqueness would be to use the correlation surface associated with a specialized hybrid algorithm As
a means for screening reference maps. Here the reference area would be broken up into homogeneous
regiv No and each pixel within the region would be replaced by the mean intene 'ty level of the entire region.
An autocorrelation of a particular sensor map over the reference mar, would be performed using a hybrid
correlation algorithm. High secondary correlation peaks would indicate areas where spatial scene
redundancy potentially could be a problem. By pulling out a number of sensor maps from the reference map
boundary and repeating this process one could determine as first-order measure the uniqueness properties
of the reference map.

The most accurate evaluation procedure usew a Monte Carlo simulation Co provide an estimate of the
update circular error probability (CEP) and Pif for a given reference area under a variety of conditions (23).
Samples are drawn from statistical distributions that represent vehicle position-velocity characteristics,
and are used to specify the sensor scene location within the reference image. Samples from another distri-
bution are used to specify the imaging environmental characteristics present (i. e., time of day). An
intensity computation for the specified conditions is performed for L-ach subscene location by using the
appropriate signature model. Noise terms and geometric distortions are similarly introduced into the
sensor scene.

The map-matching operation is then performed between the reference and specified synthetic sensor maps
using the selected matching algorithm. The along and cross-track difference between the computed and
actual (sensor scenm, draw) match point locations is determined, and by using a predetermined criteria, the
update is catalogued as either a good or false fix.

Since each of the variables are represented by statistical distributions, the simulation can be run a
specified number of times to provide CEP and Pff estimates over the range of expected update conditions.
From this, the reference scene suitability for guidance updating applications can be determined versus a
predetermined performance criteria.

An ea-timate of the spatial redundancy present within the reference scene is provided by this procedure
since the location of the sensor scene is randomly selected from within the reference map boundaries. Like-
wise, estimates of the impact of environmental, geometric and SNR effects on reference mr.p performance
are also evaluated by this procedure.

It should be recognized, however, that the quality of the performance estimate provided by a Monte Carlo
mimulation for t given reference area is generally a strong function of the preprocessing and map-matching
algorithms anO the characteristics of the environmental, and geometric distortions and SNR selected. The
use of different preprocessing or map-matching algovithms for reference scene evaluation and guidance
updatlng should be avoided to minimize performance degradations.
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Any uncertainty in specifying the random variable distribution properties utilized in the simulation will
result in a decreased confidence in the reference scene evaluation process. If large uncertainties exist in a
given variable distribution, it is better to eliminate the variable from the simulation. If significant
uncertainty errors are present in several distributions, the benefits of employing this form of reference
scene evaluation decrease and the resulting performance estimates produced are often unreliable.

4. Alaorithm selection process

Figure 5 describes the overall algorithm selection process. The sensor image io generally considered
to be some subset of thc reference map corrupted by errors. A matching algorithm is then used to locate
the position jt the sensed image in the reference map coordinate system. Based on an analysis of system
performanct-, it is possible to determine the capability of each algorithbn to accommodate various types of
ez ror. Ultimately, since for each sensor type some errors are more dominant than others, it is possible
to determine the most appropriate algorithm for each sensor type.

This section will discuss the following topics: (1) a description and categorization of error sources;
(2) &L description and classification of matching algorithms; and (3) an analysis of the compatibility of various
algorithms to accommodate different error sources.

4. 1 Error sources

The problems associated with image dynamics, geometrical distortions, noise, and other error sources
can be lumped into four mutually exclusive comprehensive categories. These categories are defined as:

i) Global errors--those errors which uniformly affect the intensity level of all scene elements. This
category would include geometric distortions and bias and gain changes.

2) Regional errors--those errors where the charn in intensity levels occurs uniformly only within
homogeneous regions within the scene. Examples would include region-level shifts (contrast
reversals) due to image dynamics and predictive coding errors from incorrect reference map
construction.

3) Local errors--errors expected to affect each pixel or grouping of pixels (contained within an
interpixel correlation length) independently. The primary example of this error source is
additive noise.

4) Nonstructured errors--this is a catchall category designed to fit those errors whose effect on the
scene can not be described as being global, regional, or local (at) example being a cloud cover over
portions of the target area changing the signature in a nonstructured manner).

The advantage of this formulation of the error source is that by grouping errors into these categories
it is simpler to describe the utility of each algorithm relative to a given class of error source rather than
haviing to backtrack and deal with each error/algorithm combinsion on an individual basis.

Reference Image

Algorithms Analysis

- Correlation System Algorithm/ Appropriate
- Feature Performance Error Algorithm/

matching Compatibility Sensor
- Hybrid Combinations

Sensed

Image

Errors

- Global
- Regional
- Local
- Nonstructured

Figure 5. Algorithm selection process

4.2 Mvap-Matching Alsorithm Classes

There are three classes of algorithms which can be employed to perform the image matching task. These
algorithms include correlation, feature matching, and hybrid classes (24).
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All algorithms perfo:m four operations: (1) transformation of the original intensity data associated with
each resolution element in %,•,kh sensed image and reference map; (2) establishment of a metric for com-
paring a portion of the reference map to the sensed image; (3) the computation of that metric for all possible
positions of comparison between the reference and sensor maps; and (%) a selection rule (generally the
extremrnum metric value) for delineating the match position based on thr, metr'ic value.

Correlation types of algorithms use the intensity values associated %with the resolution elements of each
map (of some transformation of these intensity values, ie.. normal&iation) an the map data to be used in
computing the metric. Correlation rmetrics measure either the degree of similaritv (i. e., product type
algorithm) or dissimilarity(i.e.. difference squaredi between the sensed image and the portion of the
reference map it is being compared against.

Feature matching agorithms do not utilize intensity data per se but attempt to work with only features in
the scene (25). This is generally accomplished by using algorithms to locate boundaries or edges between
regions. Edge or boundary information is extended to determine the position at which boundaries or edges
intersect. The position of this vertex point and the direction and number of line segments emanating from
the vertex point form the basis for map comparisons with the metric being some form of a mean square
distance measure between locations of vertices in the reference and sensed map. This distance measure
may be weighted by the number and direction of line segments emanating from the vertex point with multiple
intersecting vertices being weighted more heavily.

The hybrid algorithms (26) uses a combination of intensity level and region identificatirn information in
determining a match location. In this class of algorithm homogeneous regions in the ref,--rence scene are
identified and all resolution elements within the region are tagged as belonging to the region. When the
sensor is compared to a portion of the reference map, an assumption is made that this position of compari-
son is the correct one, and the sensor image is broken up into homogeneous regions as identified 'y the
counterpart elements of the reference map. The elements in each region are correlated separately using a
correlation algorithm, and the total correlation between the two maps is found by summing the individual
correlations taken over each homogeneous segment of the reference map.

4. 3 Analysis of algorithm compatibility

Let us consider which class of algorithm is most appropriate for accommodating each class of error
source separately. Table 9 shows a rating of the algorithm's ability to accommodate each error class.
Examining the errors relative to the algorithms, all algorithms can readily accommodate global errors.
Correlation and hybrid algorithms, however, probably have somewhat more difficulty in accommodating
this type of error. Corrective action for compensating for global errors nclude processing of sensor ele.
ments in smaller spatial groups to accommodate geometric errors (27-29), normalization of intensity levels
to compensate for bias errors and gain shifts, and extending the algorithm , earch dimension to include
searching the scene for scale and rotational effects. Correlation and hybrid %lgorithm corrective measures
would rely most heavily on spatial grouping and intensity level compensation, while feature matching algo-
rithms (working with less data to begin with) would primarily resort to search techniques to compensate for
global errors.

Table 9. Algorithm Ability to Accommodate Each Class of Error

Error Class

Algorithm Global Regional Local Nonstructured

Correlation Medium Poor Good Good

Feature Good Good Poor Poor
Matching

H)brid Medium Good Medium Good

Correlation algorithms are extremely poor performers in the pr% sence of regional errors, the possible
solution being (besides switching to one of the other algorithms) to stoae and search over multiple reference
maps, restrict the wavelength of the imagery to spectral regions where regional errors are not likely to
occur, or to locate reference maps in geographical areas in which regional errors are unlikely. Both the
feature matching and hybrid class of algorithms are good in accommodating regional errors.

Local errors such as noise can cause significant problems in the performance of feature matching
algorithms primarily due to the difficulty in extracting features of line boundaries from the sensed imagery
using edge type operators. Correlation type algorithms are virtua)ly immune to local errors, while hybrid
algorithms are susceptible to this error source if there is also a scene redundancy problem with noise,
making it more difficult to distinguish images with similar spatial patterns. The only corrective meaaure
for feature matching algorithms in the presence of local errors is to switch to one of the other two classes
of algorithms.



Finally, since feature matching algorithms use less information in the scene than the other two types of
algorithms, they are most suscLptible to nonstructuwed errors where positions of the sensed image may look
oblfterated when compared to the reference map. forrelation and hybrid algorithr,.j can still perform quite
well even in the presence of large missi-g areas in the sensed image.

As discussed above, each alorithm has ad-.antages and disadvantages relative to certain types of erros
sources; however, real world systems are l.kely to be faced with a combirAi nn of errar sources to deal
with.

From the discussion in Section 2, it is seen that certain sensor bands have characteristic errors pri-

marily regional (i. e., contrast reversals and predictive) errors and local ei r,3rs. Based on the magnitude

of th.esc '.rrors sourr•es ,and excluding the effects of global and nonstructure?, errorsj it is possible to deter-

mine the compatibility of sensors with matching algorithms. If regional 5 ;r~rs dominate the -process, then

a feature matching a.lgorithm is most appropriate. If local errors dorminate, t.'en c,%rrelation alporithnis

look most attractive. In the presence of both local and regicnal errors th\en the ý rid class of algorithm
looks most appropriate.

To summarize, all error sources can be placed into one of four generic categories. Using these cate-
gories one can analyze the performance of the three types of algorithms relative to a particular error
source. Some algorithms are more capable than others at accommodating certain classes of error. In the
end the final algorithm choice will depend nn determining the weighting of the error sources that the system
is likely to encounter.

An analysis was performed to determine the optimum map-matching algorithm class for each sensor
operating band based on the regional errors given in Table 7, as well as sensor characteristics and oper-
ational considerations. The results of this analys4s are summarized in Table 10. Although in no seqsor
case is one algorithm class superior to the others, a number of caveats have been developed and presented
as a guide to the mission planner to ensure optimum performance.

Table 10. Map-matching algorithm selection based on designated sensor operating region

Sensor Region Type Aluorithm Selection*

Optical/Near IR P & A - Correlation when SNR low
- Hybrid when SNR moderate and vegetation present
- Feature matching when SNR high and vegetation absent

Mdd~e IR P - Correlaticn unacceptable because of regional thermal
inertia effects.

- Hybrid when SNR low to moderate and vegetation pres'nt

- Feature matching generally undesirable unless high SNR
exists and vegetation is absent.

A - Same as Optical/Near IR

Thermal IR P - Same as Passive Middle IR

A - Same as Optical/Near IR

Microwave P - Correlation when SNR low and microwave reflectance
dominates.

- Hybrid when SNR moderate and vegetation prcsent
- Feature matching when SNR high and vegatation abeent

A - Correlation when SNR low or with one-dimensional imaging
systems.

- Hybrid when SNR moderate, vegetation present or with two-
dimensional imaging systems.

- Feature matching generally unacceptable because of inade-
quate SNR unless specialized preprocessing used.

Range or Phase - A - Correlation only when'low SNF present
Modulated Sensors - Hybrid unnecessary since regional errors are generally

small.
- Feature matching desirable when S14R high

* When moderate nonstructured errors or snow/ice/water are present, the hybrid approach must be lised
with all systems except range or phase-modulated senscrs tu ensure update reliability.
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Correlajion is desirable in active and passive optical/near Il came@ where a low SNR is present. Sources
of this type include passive low-light level operation, low scene contrast operation, or when a high atmos-
pheric aerosol content is present in the imaging path. When significant vegetation is present in the
reference area, the hybrid approach is desirable, while feature extraction is reserved for cases when a high
SNR exists and vegetation that exhibits a time-varying regiouna boundary shift is absent.

Correlation class algorithms provide unacceptable performance with passive middle and thermal IR and
generally with passive microwave imagery (when mierowave emittance predorni.mites) due to contrast
reversals or m~derate to large time-varying regional errors induced by rmateria. thermal inertia effects.
Traditional correlation techniques. including binary conversion preprocessing, lenm rally provide insignifl-
cant performance improvement when applied to middle and thermal IR imagery and small to moderate
improvements with passive microwave imagery. T1- hybrid approach is preferable in cases where less
than a high SNR exists due to sensor, imaging contrast or atmospheric reradiation considerations, or when
a ti.re-varying vegetation signature is present. Feature matching application is operationally limited as in
other spectral regions to cames where a high SNR exists and time-varying vegetation coverage Is absent.

Comments given for the optical/near I3 region are generally applicable for all map-matching systems
using active sensors. The principal limitations of active middle and (particularly) thermal I3 systems for

applications against natural materials is the low imaging contrast typically present. It is often necessary to

utilize dynamic range expansion preprocessing techniques with these sensor types, which limits the use of
feature matching methods in these cases unless a high data SNR exists.

Although atmospheric effects generally have a negligible impact on radar image contrast, the moderate
to low SNR typically present for most proposed missi-' -- borne systems coupled with specular material
returns fro.m the reference area provide other problems for operational map-matching systems. With one-
dimensional radar map-matcht.uig systems correlation algorithms are usually preferred over feature
matching to minimize the number of discrete scatters required to ensure adequate performance. Hybrid
algorithms are preferable when a moderate SNR exists or when significant vegetation is present that
possesses a time-varying signature. Feature matching algorithms are generally unacceptable for pro-
cessing missile borne radar data because of typically low SNRs unless specialized preprocessing techniques

are used which emphasize stablewhile deemphasizing potentially unstable, edges present.

For range or phase-modulated sensors, the hybrid approach is generally unwarranted (unless a signifi-
cant amount of deciduous trees exist) because of the generally time-invariant nature of these forms of
reference imagery. The choice between co -relation and feature matching approaches here should be deter-
mined versus the expected SNR since predictive and nonstructured errors are generally small.

In addition to the cavLats just presented, it should be recognized that other error types sometimes pre-
sent can significantly alter map-matching performance. Correlation and feature matching algorithm class
performance are sensitive to predictive (i. e., snow/ice/water complex) and nonstructured (i. e., shadowing)
reference map errors. In the event that a high probability of time and space-varying snow/ice/water or
shadowing exists within the reference area, the hybrid algorithni class is preferable. The only practical
exception to this, allowing adequate correlation or feature matching performance, would involve the blockage
of only a small amount of the total map information content (i. e., number of independent elements) snd/or
total map area.

In summary, when sensor characteristics or operational considerations result in a low SNR and when the
selected reference area has a relatively time invariant signature, correlation class algorithms should be
considered. When a moderate SNR exists and predictive and nonstructured errors are expected, the hybrid

class is preferable. In cases where a high SNR exists and predictive and nonstructured errors are small,
feature mapping is desirable.

5. Performance predic ion

Major performance considerations for image matching systems involve (I) the avoidance of false fixes

during acquibition, and (2) the accuracy with which the position fix can be made. The major focus of this

paper is on the acquisition phase of image matching, which is the more difficult and important part of the

overa.l problem to be solved. The acquisition system designer relative to performance measures is con-
cerned (1) with developing general guidelines for performance as a function of sensor and computational
algorithm characteristics, and (2) real-4ime scene dependent estimates of system performance in order to
determine whether or not a position fix is valid. This section is therefore divided Into two parts: one
dealing with the general development of performance guidelines for acquisition and the other dealing with

adaptive techniques for estimating system performance in real-time onbcard the vehicle.

5. 1 Performlnce guidelines for systems

As pointed out above, the performance criteria for acquisition is concerned with the avoidance of false

fixes as measured by its probability of occurrence, Pif. Developing some general theoretical guidelines in

this area avoids the expenses associated with developing guidelines completely from Monte Carlo simula-
tions. The general theoretical development of determining Pff or P (I - Pff)) begins with examining the
coirelation surface shown in Figure 6. The correlation values can fm broken into two groups--those asso-
ciated with match and nonmatch correlation values. 6 (3), which are located away from the central peek. As
seen in Figure 4 these correlation values can be compactly represented by two statistical distributions--one
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associated with the nonmatch values and one associated v Ith the match value(s). The corr Aation value(s)
associated with the correct match point may also take on a distribution or values due to noise And. other
errors (inch as geometric) in the system. Errors will have a tendency to spread out both the match and
nonmatch covrelation distributions. The computation of the performance measure involves dotormining the
probability that a correlation value drawn from the distribution associated with the .match point exceeds all
correlation vah~es drawn from di ribution associated with nonmatch values.

NON MATCH POSITIONS MATCH POSITION NON MATCH POSITIONS

* -
050 1% 00- +9 e> 0

COINCIDENT REFERBCE MAP MAP COINCIDENT
S I

CORRELATOR OUTPUT (INTENSITY VS DISPLACEMENT) I
MATCH I•(0)

POSITION 
(I r W#I 0-) I o--,.' II4 % "% "-L6"" ' L*'-0'0)

OUT-OF-R' C, STERWI OUT-OF-REGI STER
"--- CORRELATION VALUES - CORRELA1"ION VALUES--"TAT.-ST-.CAL

00) #M STATISTICALS)REPRESENTATION
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Figure 6. Output of :orrelatkon process

Mathematically this can be -'-pressed ae the generrl e, ~resaion shown in Figure 7, where it is
necessary to compute for a given match correlation value the probability that the match correlation value
exceeds the nor ratch correlation value for all normatch positions 4f comparison (Q) between the sensed
image and reference maps with this expression being weighted by the distribv,*lon associated with the match
values (30, 31). If the match and nonmatch correlation values are indeed independant, then, as shown in
stop 2 of Figure 7, the probability expression can be computed using two separate distribution functions--one
for the match value and one for all the nonwat-ch val',es.

In the real world there are generally spatial patterns in the sensed imagery which are partially repeated
in some position of the reference map. This scene tntorredundancy problem can be a major source of
system failures when compounded by noise and other error sources. It ^lso generally causes the coirela-
tion value at some nonmatch points to be highly dependent on the match correlation, thus prevonting the two
distributions to be separated and requiribg a joint distribution expression to be used in computing the proba-
bility that a nonmatch correlation value exceeds the match correlation value. If one attempts to be
mathematically correct in modeling this scene interrodur-dancy problem., the expression involving the joint
distribution function (for match and nonmatch values) causes one into a scene specific "modus operandi" with
a probability expression which ii too complicated to derive general results from.

Most authors, in attempting to develop a general Pc guideline, have ignored the implications of the scene
redundancy and have assered the match and noumntch correlation values to be independent. The implita-
of avoiding to model the intrscoene reddlancy prob;em are twofold. First, and foremost, the analysis

.lDue to rMaelation in the scene elements themselves several values around the correct match pouk may be
-' l l - i'.-.., A,, .



which ;ollows to determine tht P,- guidelines should be considered a limitinp case where nois end other
appropriately modeled errors dominate the failure %node. For situations where the scene selection pro-
cesees have done a good job in scre6nini out the scene redundancy failure mode, the analysis could still
provide usena perfovman-e guid.lines. if. however. sufficient effort was not rade in properly selecting
reference maps to avufd scene redundancies, system performance in likely to be significantly worse than
predicted by these guidelines. Second, other approximations and assumptions beyond this point take on less
significante.
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Fidure 1. Probability expreesions for correct match

Returning to Figure 7, in order to achieve tha next level of simplification from the general expression it
is necessary to assume all nonmatch correlation values are independent. Two factors invalidate this
assumption. First. the nature by which some computationsl algorithms (I e.M Mean Absolute Difference
(MAD)) process the map elements leads to adjacent correlation values being correlated and hence not
independent. This problem can be overcome by the avoidance of this type of algorithm. Another problem
arises from the fac.t that real world acerie elements are almost always correlated which leads to their
associated correlation values beizg correlated. This problem can be overcome by modeling the scene to be
composed of a number of independent elements (lees than ths total numbe of scene eloments) estimating the
number of equivalent independent elements in the scene, and using this number in the Pc computation pro-
cess. Here not only must the scene be scaled by the correlation length factor, but equivalent scaling must
be performed on the number of nonantch comparison points.

Further simplification of the expression step 3 to step 4 requires all the nonmatch correlation values to
be Identically distributed. In general the heterogeneous nature of scene structure, i.e., the scene being
composed of homogeneous regions with different mean Intensity values, can negate this assumption. The use
of algorithms which tend to homogenioe scenes (such as the hybrid algorithm) can overcome this difficulty
and make this assumption more realistic.

SiAcoj correlation values involve the summing of a large number of random variables (some combination
of t•e scene elements) the central limit theorems can be invoked to simplify the expression in stop 4 further.
This assunption implies that the distribution of the match awd nourmnatch correlation values is Gaussian.
]P& a Aher approximation can be applied to obtain a closed form expression for the performance
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Tc aummarise, one cannot develop a useful general expression for computing PC in the presenxce Of
scene interredund&ncy problems and other external error sources such as noise a&nd distortions. f one can
ignore the scene redundancy p•obl=m by a stringent scene seldction process. it is possible, using a series
of approximations and assumptions, to develop a Pc expression -which yields guidelines for vystein per-
formance in the presence of noise and other error scurces. The remainder of this section will examine
developing adaptive techniques for estimating system performance from the correlation surface itself.

5. Z Adantive methods

In order to ensure mission effectiveness and safe warhead arming, a criteria to a.timate whether the
guidance update is acceptable or not is desirable. One proposed technique involves a voting logic with three
successive update scenes. Here, the determined fix point of two of the three correlated scenes must be
matched within an acceptable bound; else tle fix sequence ii rejected for guidance updating. Although
simple to implement and suitable for use with relatively invariant reference areai, this technique breaks
down when the update area is missed altogether; or when significant vaviations from the expected scene
signature exist that can not be modeled b priorL When coupled with the laherent modeling limitations of
miost sensor operating bends, this technique does not provide any indication of the uncertainty of the
individual fixes.

I Two basic techniques exist which are capable of providing a better performac,: ) -stir•ate of update quality.
The first involves the analysis of the distribution of the raw sensor scene data. i•ndr conditions of cloud
cover or surface snow/ice/water the resulting standard deviation of the distribution will often approach that
of the noise equivalent (spectral) power of the sensor itself, a-d thus will be substant.41y smaller than that
from the unexpected update area. If a multmodel (histogram) distribution exists where the mean and
standard deviation of a region are substantially different than expected, the suspect points can be labeled
before further processing. When the ratio of the number of total imaged points versus those in the suspect
distribution region each a predetermined value, the image can be deleted from the update or voting process.

A more reliable technique involves comput4ng the correlation, hybrid or feature extraction surface, then
using properties or statistics of that distribution for eatimcting update performance. A list of theme
techniques in order of increasing reliability is given in Table 11.

Table 11. Statistical Match Surface Methods for Estimating Fix Quality

1. Main peak amplitude

2. Main peak to first or highest sidelobe
amplitude ratio.

3. Main peak amplitude vs background statistics ratio

4. Statistics of main peak vs background

5. Above, with compensation for inter-point
scene correlation and algorithm contribution.

6. Above. with homogeneous region segmentation
of reference scene.

eMethods in increasing order of effectiveness

While alU six approaches can be used with correlation or hybrid algorithms, only the first three are
compatible with feature matching techniques. (As given in Table IA. the sixth and most accurate approach
for fix performance estimation directly incorporates the hybrid algorithm.) An analytical relationship
between surface statistics and original scene properties may not exist because of the use of edge or vertex
data for matching with feature matching techniques. In either case, a decision threshold based on surface
properties or statistics for fix acceptability must be determined A priori from accurate simulation of the
update areas. The first three cases are simple to implement, and utilie the miain peak, its ratio with the
first or highest sidelobe peak or its ratio with the surface background statistics.

The first case uses the amplitude of the main peak and is g-nersUy unreliable. It is highly dependent on
the Imaged "lnformation content" (L . . NI) which can vary significantly with environmental distortions and
SNR. The second utilizes the ratio of the main to first or highest sidelobe peaks. It is generally unreliable
unless the ratio is very high or low. For realistic intermediate cases, the ratio will oscillate considerably
due to environmental distortions and SNR variations. Although an improvement over preceding cases, using
the ratio of the main peak versus background statistics, can often be unreliable because estimates of the
original reference and sensor scene statistical properties are omitted which impact the matching surface,
hence this ratio.

The fnal three a•pproaches of varying degrees of completones determine a probability of correct match
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The fourth came utilites estimates of the main peak and background statistics to determine the degree of
separation between in and out of register distributions (hence P,). Although an improvement ovur the
preceding cases, it does not utilize estimates of the original scene Otatistics and is also liased by the
matching algorithm itself An example of this case is the Bhattachryya distance. In the next case, com-
pensation is made for both the interpoint scene correlation and the impact of the matching algorithms on the
surface stattaties. If level shifts between regions in the update area do exist, this approach can he very
accurate.

The last approach utilizes the methodology of the previous case, but with region segrmentation for hybrid
processing. Here, the reference scene is segmented into homogeneous regions and matched against the
unsegmented sensor image. Since diurnal or seasonal level shift variations occur in most spectral imagery,
compensation to region boundaries is generally required to ensure the accuracy of fix quality estimates. The
hybrid approach is generally more reliable than one which segments both reference and sensor scenes before
processing; sirnce this method tends to amplify environmental and SNR induced region boundary distortions.
It is estimated that this hybrid algorithm has considerable utility in fix quality evaluation; since it incorpo-
rates the statistical properties of both the original and correlated reference and sensor scenes.

6.0 Summary

This paper advances seven major points. First, there are map difference errors between the reference
map and sensor image which have time and spatial varying components. The magnitude of these errors is
highly sensor wavelength or frequency dependent; however, the statistics of the map difference errors can
be quantified for each sensor wavelength aj a function of the material properties of the scene.

Second, an important aspect of the probleim is to choose and to evaluate reference maps to avoid using
areas which:

1) do not contain sufficient information,
2) have a scene redundan-, problem, and
3) have materials at a wavelength under investigation with large signature oscillations.

Third. grouping errors and algorithms into the generic classes indicated in this paper simplifies the
analysis and enables tho problem to be structured.

Fourth, certain algorithms can accommodate certain classes ef errors more readily than other types of
algorithms. As certain sensor wavelengths have a class of errors which dominate, it is possible to pre-
determine which algorithm is most appropriate for dealing with scene data at a given sensor wavelength.
This paper defines those algorithm/sensor wavelength relationships for several specific operational condi-
tions.

Fifth, the computation of the probability of correct match is scene dependent. and hence any generaliza-
tion must be considered an approximation. Since no absolute Pc measures can be determined, it is not
useful to develop optimal algorithms based on mathematical approximations to the general P c formulation.
The more appropriate problem is to obtain the correct algorithm for accommodating the mkp difference
errors which are anticipated to occur and not to worry about which sub-class of algorithm it mathematically
optimal for the ideal, nonreal world case.

Sixth, it is possible to improve the process of updating missile position by using map-matching surface
d&ta to estimate in real-time the performance of the system. These estimates, while approxlmations, have
proven through experimentation useful in separating true matches from false matches and can be used in
weiihting the accuracy of the fix pzsition.

Seventh, a new class of map-matching algorithm, the hybrid algorithm, was pr.sented which incorporates

many of the advantages associated with the feature matching algorithms while avoiding many of the pitfalls
associated with extracting features from noisy sensor images. It was shown to have a significant utility in
dealing with a large number of map difference errors.

7.0 Conclusions and recommendations

The major stumbling block in analysing map-matching systems is the "scene. " Variations in the
temporal and spatial characteristics of scenes mitigate the need for high-oz'dar algorithm refinement and
invalidate sophisticated math modeling of the process. Such variations in scene imagery are the major
problems in developing an automated system. Two major entities are required to deal with the problem:
(1) the establishment, and (2) an analysis of a data base devoted exclusively to the image dynamics probl- -u

A data base should be created for each sensor wavelength enumerated in this paper. The data base
should consiat of (1) a statistically representative set of reierence maps covering the range of expected
materials, material interfaces and target types likely to be encountered, (2) an accompanying set of sensor
images (contained within the reference map boundary) which reflect the range of expected temporal signa-
ture variations, and (3) a library of the physical and wavelength dependent electrical properties of "comwon"
scone materials.



Having developed suc~h a data bass it is then necesasry to statS~sti~ally quantify the nature of the *can*
errors present. Baited on this quantification, the most appropriate algorithm class and preprocessing
choice for a particular wavelength (and possibly target type) can be determined. Finally, after evaluating
syrtem performance over the expected range of scene errors and operational constraints it would be possi-
ble to determine which asamior wavelength@ are moat appropriate for the image matching tasks.
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Texture

The concept of texture from a scene composition/sensor resolution description has previously been intro-
duced. It is of interest to explore the source of the textural spectral signature variations present on a time
and space-varying basis within sensor imagery. Texture is effectively produced by two different types of
phenomena.

In the first case, a material of different physical or electrical properties than its neighbors exists within
the scene. If it occupies one or more scene elements it will be resolved within the sensor image. It is also
possible to resolve this material un a subelement basis if its area times radiance is greater than that from
all other materials within the element, and if the resulting radiance is above the detectors SNR.

In the second case, a truly homogeneous material may exist within a region virtually independent of
resolution (i. e., dry beach sand). Texture may still be present due to three factors.

The first is the slope and slope azimuth of the material relative to the sun (or iluminator)-target-sensor
geometry. It is possible for areas with moderate slopes (Z00o-300) to produce substantially more or less
radiance depending on their orientation between illumination source and detector (this is especially irnpor-
tant when direct (i. e., laser or sun) versus diffuse (i. e. , skylight) irradiance exists).

For imaging lasers and radars, slope and slope azimuth between the illuminator-target-detector
geometry significantly impacts the magnitude of the returned target radiance. At least here, versus a
passive system, the illuminator is usually co-located near the detector. The net effect of this is to simplify
the governing geometry for determining the return vector of the propogated wave. Weak to moderate
reflectors oriented at steep incident angles to a co-located transmitter/detector can often produce a signifi-
cantly greater return than strong reflectors oriented less favorably.

For passive systems where the illuminator (usually the sun)-vehicle geometry is generally not co-located,
shadowing is more difficult to evaluate. Here, shadowing is often a problem due to the time-varying sun-
target geometry colipled with slope and slope azimuth, aud surface roughness of the teference area. As a
consequence, shadowing can significantly impact daytime optical/near IR and middle IR imagery where &
strong solar component exists. Its effect in the thermal IR region is to prevent direct incident short wave-
length radiation from being absorbed by the target, thus reducing the diurnal temperature oscillation by
weakening the thermal inertia driving function. Becautoe of the diffuse nature of passive microwave radi-
ation, the effect of shadowing on apparent brightness temperature is generally not a problem within a
reasonable range of antenna depression angles with this form of imagery for water and metal because of
their moderate to high microwave reflectances respectively. For materials with high microwave emittances,
shadowing weakens the thermal inertia driving funct-on for diurnal temperature oscillation, and can reduce
the emissive power and the resulting observed apparent brightness temperature.

As with active illuminator systems, slope and slope azimuth play an important role in many passive
imaging systems. In the optical/near mR and middle IRL regions it impacts the returned target radiance
similarly to active systems,although to a greater extent because of the varying solar-target geometry. Slope
and slope azimuth also produce differential heating from absorbed short wavelength solar radiation, which
can have a moderate to strong impact on night-time middle IR and diurnal thermal IR imagery and a small to
moderate effect on diurnal passive microwave imagery when a high microwave material emittance exists.

The second parameter that can produce image texture is the material reflection coefficient or reflectance,
A variatinn in smooth surface reflected energy versus incid-nce angle exists due to (real and imaginary)
material else.rical components. Because material reflectance is the dominant energy balance parameter in
several spec~zý. regions, its directional characteristics can have a significant impact on the amount of
energy returned irom a target. The real component is the material dielectric component, while the imagi-
nary one equals th- el~ctrical conductivity divided by the angulLr frequency times the free-space
permittivity, For conductors (i. e., bare metals), the second component generally predominates. For
dielectrics (most naturc.1 materials) the first term is usually dominant since negligible electrical conduc-
tivity exists.

Given the electrical component values, the vertically or horizontally polarized directional reflectance for
a smooth material can be determined from Fresnel's equations at a particular wavelength (34). The values
computed by Fresnel's equations provide a measure of theoretical material reflectance versus incident and
reflecte' - -glee. Surface roughness height and orientation can, however, significantly impact the amount of
radians tually reflected (or absorbed) by the material.

Consequently, the third param.ter of interest is the roughness of the surface itself. For the same
illumination source-detector geometry multiple reflections will occur within the material when the roughness
height to wavelength ratio is large. This results in an increase in absorptance and a consequent increase in
emittance in wavelength regions where this parameter is relevant. When the ratio of roughness height to
wavelength is small, multiple reflection effects diminish, and the resulting absorptance decreases to a
theoretical minimum for the material.
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The directional and bidirectional reflectances of a material in a given wavelength region are dependent on
the surface roughness as well as the governing electrical relationship. Unfortunately, it is difficult to
characterize surface roughness. The root mean square (rms) roughness sometimes used provides no infor-
mation pertaining to the statistical Aistribution of roughness around the rms value and the average slope of
the sides of the roughness peaks, although they can significantly influence directional and bidirectional
reflectance (34). As a result the directional and bidirectional reflectance characteristics that some
materials exhibit are due to a combination of complex surface structure and surface impurities (i. e., iron
oxide or moss) present together with the materials inherent electrical properties.

Surface roughness significantly impacts the returns from imaging lasers and radars depending on the
relevant geometry. When a shallow incidence angle exists between the illuminator arid target, the net
effect for rough surfaces is often to return more radiance than from a smooth one because of the effective
presence of material corner reflectors. This is evident in radar data when examining imagery from smooth
versus rough fields or water. At steep incidence angles, the reverse is true. Here, a smooth, surface will
generally return more radiance than from a rough one.

Surface roughness can also impact the returned target radiance in the optical/near IR, and to a lesser
extent in the middle IR region, because of the predominance of the direct solar illumination component. The
effects are similar to those discussed under active illuminator systems. In the thermal IR region, an insig-
niiicant amount of direct energy radiated by the sun reaches the surface and generally high emittarce exist
for most natural materials (typically . 85 to . 99). As a consequence, the net effect here is to impact the
short wavelength absorptance and possibly the material thermal i:Lertia.

In the passive microwave imagery where high emittance materials are present which have a surface
roughness substantially greater than the imaging wavelength, effects similar to those in the thermal IR
can exist. Many materials such as metal, concrete, asphalt and smooth water behave specularly in the
passive microwave region (particularly at frequencies below 140 GHz) because tleir surface roughness is
small in comparison ,o the imaging wavelength. ' An interesting case of the effect of surface roughness on
material reflectance in this region occurs with water. Calm water behaves as a good specular reflector of
passive microwave radiation (second only to metal in this wavelength region). As surface roughness
increases, the magnitude of the sky radiation times microwave material reflectance term decreases due to
multiple reflections present. As a consequence, the emittance times the ground (water) temperature term
predominates in rough water where capillary waves exist, and ernissive power variations under clear skies
can be on the order of 20% to 300/c between this and the smooth water case.
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